3.4 Hypothesis Testing
Hypothesis testing can be carried out by computing the empirical variance-covariance matrix
\begin{equation*}
Var\left( \boldsymbol{\hat{\gamma }} \right)={{\left( -\frac{{{\partial }^{2}}\left( \ln L \right)}{\partial
\boldsymbol{\hat{\gamma}}\partial {{\boldsymbol{\hat{\gamma }}}^{T}}} \right)}^{-1}},
\end{equation*}
where
\boldsymbol{\hat{\gamma}}={{\left( {{{\hat{\beta }}}_{0}},{{{\hat{\beta }}}_{1}},{{{\hat{\beta }}}_{2}},
\hat{\sigma } \right)}^{T}}. When the
i.i.d. assumption is violated, such as with cluster samples, the
robust standard error can be generated from
\begin{multline*}
Var{{\left( \boldsymbol{\hat{\beta }} \right)}_{robust}}={{\left( -\frac{1}
{{{{\hat{\sigma }}}^{2}}}\sum\limits_{i=1}^{n}{\sum\limits_{t=1}^{{{T}_{i}}} {\boldsymbol{x_{it}^{*}}
\boldsymbol{x{{_{it}^{*}}}^{T}}}} \right)}^{-1}}\left[ \sum\limits_{i=1}^{n}{\left( \sum\limits_{t=1}^{{{T}_{i}}}
{\frac{1}{{{{\hat{\sigma }}}^{2}}}\boldsymbol{x_{it}^{*}}{{e}_{it}}} \right)\left( \sum\limits_{t=1}^{{{T}_{i}}}{\frac{1}
{{{{\hat{\sigma }}}^{2}}}{{e}_{it}}\boldsymbol{x{{_{it}^{*}}}^{T}}} \right)} \right]\\{{\left( -\frac{1}
{{{{\hat{\sigma }}}^{2}}}\sum\limits_{i=1}^{n}{\sum\limits_{t=1}^{{{T}_{i}}} {\boldsymbol{x_{it}^{*}}
\boldsymbol{x{{_{it}^{*}}}^{T}}}} \right)}^{-1}},
\end{multline*}
where
T refers to a temporal or spatial unit,
n is the overall sample size, and
T_{i} is the sample size for
the
ith unit. (
Greene, 2008, 515)
To evaluate the sensitivity of hypothesis testing when different models are applied, the author
compares the mean absolute deviation of the four parameter estimates and their corresponding t statistics, a measure
that indicates the variability of the regression result and the significance level of parameter estimates per trial.