Loading Web-Font TeX/Math/Italic
Logo

3.4 Hypothesis Testing

Hypothesis testing can be carried out by computing the empirical variance-covariance matrix
\begin{equation*} Var\left( \boldsymbol{\hat{\gamma }} \right)={{\left( -\frac{{{\partial }^{2}}\left( \ln L \right)}{\partial \boldsymbol{\hat{\gamma}}\partial {{\boldsymbol{\hat{\gamma }}}^{T}}} \right)}^{-1}}, \end{equation*}


where \boldsymbol{\hat{\gamma}}={{\left( {{{\hat{\beta }}}_{0}},{{{\hat{\beta }}}_{1}},{{{\hat{\beta }}}_{2}}, \hat{\sigma } \right)}^{T}}. When the i.i.d. assumption is violated, such as with cluster samples, the robust standard error can be generated from
\begin{multline*} Var{{\left( \boldsymbol{\hat{\beta }} \right)}_{robust}}={{\left( -\frac{1} {{{{\hat{\sigma }}}^{2}}}\sum\limits_{i=1}^{n}{\sum\limits_{t=1}^{{{T}_{i}}} {\boldsymbol{x_{it}^{*}} \boldsymbol{x{{_{it}^{*}}}^{T}}}} \right)}^{-1}}\left[ \sum\limits_{i=1}^{n}{\left( \sum\limits_{t=1}^{{{T}_{i}}} {\frac{1}{{{{\hat{\sigma }}}^{2}}}\boldsymbol{x_{it}^{*}}{{e}_{it}}} \right)\left( \sum\limits_{t=1}^{{{T}_{i}}}{\frac{1} {{{{\hat{\sigma }}}^{2}}}{{e}_{it}}\boldsymbol{x{{_{it}^{*}}}^{T}}} \right)} \right]\\{{\left( -\frac{1} {{{{\hat{\sigma }}}^{2}}}\sum\limits_{i=1}^{n}{\sum\limits_{t=1}^{{{T}_{i}}} {\boldsymbol{x_{it}^{*}} \boldsymbol{x{{_{it}^{*}}}^{T}}}} \right)}^{-1}}, \end{multline*}

where T refers to a temporal or spatial unit, n is the overall sample size, and T_{i} is the sample size for the ith unit. (Greene, 2008, 515)

To evaluate the sensitivity of hypothesis testing when different models are applied, the author compares the mean absolute deviation of the four parameter estimates and their corresponding t statistics, a measure that indicates the variability of the regression result and the significance level of parameter estimates per trial.

Download [full paper] [supplementary materials] [all replication files] [technical note]